在现代化工厂的自动控制中,调节阀起着十分重要的作用,这些工厂的生产取决于流动着的介质正确分配和控制。这些控制无论是能量的交换、压力的降低或者是简单的容器加料,都需要某些终控制元件去完成。
调节阀在管道中起可变阻力的作用。它改变工艺流体的紊流度或者在情况下提供一个压力降,是由改变阀门阻力或“摩擦”所引起的。在调节器的低能量级和执行流动流体控制所需的高能级功能之间,终控制元件完成了必要的功率放大作用。这一压力降低过程通常称为“节流”。对于气体,它接近于等温绝热状态,偏差取决于气体的非理想程度(焦耳一汤姆逊效应)。在液体的情况下,压力则为紊流或粘滞摩擦所消耗,这两种情况都把压力转化为热能,导致温度略为升高。
调节阀正常运行后要进行维护和保养。调节阀作为自动化控制系统的一部分,其维护应与自动化仪表和其他设备同时进行。
调节阀的维护与一般仪表的维护类似,可分为被动性维护、预防性维护和预见性维护。被动性维护是当调节阀等设备出现故障时才进行维护的一种维护方法。调节阀研磨法细的研磨,消除痕迹,减小或消除密封间隙,提高密封面的光洁度,以提高密封性能。由于设备发生故障才维护,因此常常造成生产过程停车,严重时甚至出现设备损坏或人员伤等。被动性维护是生产过程所不希望的维护,预防性维护是根据过去的运行经验,按时间进行维护的一种维护方法。
调节阀的流量特性,是在阀两端压差保持恒定的条件下,介质流经调节阀的相对流量与它的开度之间关系。调节阀的流量特性有线性特性,等百分比特性及抛物线特性三种。三种注量特性的意义如下:
等百分比特性
等百分比特性的相对行程和相对流量不成直线关系,在行程的每一点上单位行程变化所引起的流量的变化与此点的流量成正比,流量变化的百分比是相等的。所以它的优点是流量小时,流量变化小,流量大时,则流量变化大,也就是在不同开度上,具有相同的调节精度。
线性特性
线性特性的相对行程和相对流量成直线关系。单位行程的变化所引起的流量变化是不变的。流量大时,流量相对值变化小,流量小时,则流量相对值变化大。
抛物线特性
流量按行程的二方成比例变化,大体具有线性和等百分比特性的中间特性。
从上述三种特性的分析可以看出,就其调节性能上讲,以等百分比特性为优,其调节稳定,调节性能好。而抛物线特性又比线性特性的调节性能好,可根据使用场合的要求不同,挑选其中任何一种流量特性。
在调节理论的术语中,调节阀既有静态特性,又有动态特性,因而它影响整个控制回路成败。静态特性或增益项是阀的流量特性,它取决于阀门的尺寸、阀芯和阀座的组合结构、执行机构的类型、阀门定器、阀前和阀后的压力以及流体的性质。
动态特性是由执行机构或阀门定器一执行机构组合决定的。对于较慢的生产过程,如温度控制或液位控制,阀的动态特性在可控性方面一般不是限制因素。(23)波纹管密封阀……调节阀按驱动能源分类(1)气动调节阀。对于较快的系统,如液体的流量控制,调节阀可能有明显的滞后,在回路的可控性方面一定要有所考虑。一般只有控制系统的才需要关心调节阀的动态持性,关于应用阀门定器的正规考虑如第9章中所讨论的,将满足大多数调节阀装置的需要。