大类间方差法根据图像的灰度特性寻找阙值,使分割出的图像区域之间的差别大,用于判断分割图像区域之间的差别是其各区域间的内部方差。大类间方差法极易受到噪音的影响,如阴影,但在单纯背景条件下,适用于初步的获取目标物的位置。大熵阙值法与大类间方差原理类似,将图像通过信息熵分为不同区域。信息熵在混乱无序的系统中较大,在确定有序的系统中较小,根据信息熵的特性,可将图像分割为不同的区域。
对于以矩阵形式存储的图像来说,采用模板矩阵(算子)对源图像进行卷积运算是其提取梯度特征的通用方法。Sobel算子计算量较少,抗噪性较好且能保留边缘的强弱,由一个用于提取水平方向特征和一个用于提取垂直方向的特征的算子组成。Sobel算子十分适合用于提取农产品方向性的特征,例如槟榔的纹路就能很好的被垂直方向的Sobel算子提取出来,通过纹路分布密度,进行槟榔的分级任务。
“安全、营养、食欲”被看做是食品的三要素,其中,安全是对食品的基本要求,也是消费者选择食品的主要标准。食品是人类生存和发展基本的物质基础,食品工业是许多国家的产业支柱,但日益加剧的环境污染和频繁发生的食品安全事件给人类的生命健康带来了巨大的威胁,食品安全问题引起了越来越多的关注。谈及食品安全问题,重金属、农药残留、兽药残留、添加剂、生物和致病菌是我国粮食安全的六大威胁。