x射线发生装置原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。
x射线发生装置使用范围:
金属材料:半导体材料、合金、超导材料、粉末冶金材料;无机材料:陶瓷材料、磁性材料、催化剂、矿物、水泥、玻璃;复合材料:碳纤维、纤维大分子、工业废弃物;有机材料:品、工程塑料、各种树脂等。利用波长很短的电磁波能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感、气体电离,测定物质的晶体结构,织构及应力,的进行物相分析,定性分析,定量分析。
x射线发生装置-涂层应用
现代生活的每个环节都得益于涂层或薄膜技术。无论是集成电路芯片上的阻挡层薄膜还是铝制饮料罐上的涂层,X射线是研发,产品过程控制和不可缺少的分析技术。作为纳米技术研究,X射线衍射(XRD)和附属技术被用于确定薄膜分子结构的性质。理学的技术和经验为涂层和薄膜测量提供各种无损分析解决方案。