随着电力电子器件的飞速发展和可再生能源的大量需求,基于电压源换流器的直 流输电和配电技术快速发展。柔性中压直流(Medium-Voltage DC,MVDC)配电网具有线路损 耗小、供电、电能质量优等特点,在分布式电源并网、构筑城市直流电网等方面优势 显著。由于模块化多电平换流器(modular multilevel converter,MMC)开关频率低,损耗小,动静态均压优,因而在柔性直流工程中更受青睐。当前基于MMC的直流工程多采用自然 双极和小电流接地方式,在深圳试点的±10kV直流配电工程采用换流变阀侧高阻接地方式。
两电平VSC大电容处电流和相邻极线电流的相关性来判定区内外故现有技术通过比较两电平VSC大电容处电流和相邻极线电流的相关性来判定区内 外故障。然而,由于MMC电容分嵌在子模块中,单极接地时子模块电容没有放电回路,方法不 适用。现有技术利用限流电抗器两端的电压变化率检测直流线路故障,但该方法在功率 反转情况下保护阈值需重新整定,且在直流配电网中安装直流电抗器不具有普遍意义。现有技术利用小二乘法计算等值电抗值,但在多分支系统中难以识别具体馈 线。
架空明馈线
架空明馈线是在电杆上架一对或多对明导线,一对导线构成一个电信道。电磁波沿这对导线以近似于光的速度(300000km/s )向前传播,也内电流的变化状态近似于光速向前传送,这样就可以把电信号高速地从一地传送到另一地。
在架空明导线中传送电流时,由于集肤效应的现象,会导致交流电阻随着信号频率变高而增大。这种现象是怎样产生的呢?在导体内通上内外磁场的方向和大小都是交变的,这将在导线内产生感应电动势,在这两个内外感应电动势的作用下,在导线中将产生的电流和原导体中流率愈高感应电动势愈大。因为导线内层比外层部分有更多的电力线包围,所以导线中心感应电动势比外层要大。换句话讲,在导线中心的电流小,随着频率曾高,此现象愈显著,这种现象称为集肤效应,它将增大导线电阻。由于集肤现象,在导线中心处几乎无电流流过,利用该现较便宜的金属制成,所以现在的架空明线普遍用双金属导线,例如铜包钢天线明馈线。
常用的架空明馈线有平行双线、边联四线、交叉四线等。架空明馈线的优点是传输损耗小、结构简单、架设方便、成本低,缺点是存在辐大,主要用于短波和超短波通信。
同轴电缆(Coaxial Cable)是指有两个同心导体,而导体和屏蔽层又共用同一轴心的电缆。常见的同轴电缆由绝缘材料隔离的铜线导体组成,在里层绝缘材料的外部是另一层环形导体及其绝缘体,然后整个电缆由特氟纶材料的护套包住。
同轴电缆由里到外分为四层:中心铜线(单股的实心线或多股绞合线),塑料绝缘体,网状导电层和电线外皮。中心铜线和网状导电层形成电流回路。因为中心铜线和网状导电层为同轴关系而得名。