储能系统可以将可再生能源的过剩部分储存起来,以在能源供应短缺或不稳定的时候释放出来使用。
能量管理系统可以根据可再生能源的供应情况和电网的需求情况,动态地调整储能设备的运行模式和能量分配方式,实现供需平衡,提高可再生能源的利用效率。
储能系统和能量管理系统在可再生能源领域的应用已经取得了显著成果。储能系统和能量管理系统还可以应用于电动汽车、航空航天、智能建筑等领域,实现能源的利用和持续发展。
化学类储能:利用氢或合成作为二次能源的载体,利用多余的电制氢,可以直接用氢作为能量的载体,也可以将其与二氧化碳反应成为合成(),氢或者 合成除了可用于发电外,还有其他利用方式如交通等。德国热衷于推动此技术,并有项目投入运行。不足之处:全周期效率较低,制氢效率仅 40%,合 成的效率不到 35%。目前研究发展主要还是集中于超级电容和电池(锂电池、液流电池)上。材料领域的突破才是关键。
可再生能源的分布式特性可以减少大型集中式发电厂的电力传输,但也给整个电网的安全稳定供电带来挑战。因此在输电网中,需要由储能(特别是抽水蓄能)来提供平衡传输能力的灵活性。现在有很多城区能源规划还没有意识到储能的重要性,能源系统中也没有储能的位置,似乎储能是可有可无的。其实,如果没有储能措施的保障,能源规划的目标(比如增加可再生能源渗透率)是很难实现的。
国内早期的地源热泵主要也是采用这种方式,即利用地下水作热泵的热源/热汇,换热后回灌。但由于经常出现采水量大于回灌量的不平衡,导致某些缺水地区(如北京)地下水位下降、某些地区(如上海)要再次面对地面沉降问题。另外,回灌可能导致地下水污染,也是被极为重视的问题,因此大多数省份已经明文禁止在城市地区开采地下水。